
Hash Tables II
Lecture 20

1

CS61B, Spring 2024 @ UC Berkeley
Slides Credit: Josh Hug

Visualization for Some Basic Cases
hashCode and Equals

• Why Custom Hash Functions?
• contains
• Duplicate Values

The Danger of Mutable Keys
• Mutable vs. Immutable Types
• Mutable Hash Table Keys

A Peek into Java HashSets

Visualization for
Some Basic Cases
Lecture 20, CS61B, Spring 2024

Sets and Maps

We’ve now seen the two implementation philosophies for Sets and Maps.
● Red black tree based approach: TreeSet/TreeMap.

○ Requires items to be comparable.
○ Logarithmic time operations.

● Hash table based approach: HashSet/HashMap.
○ Constant time operations if the hashCode spreads the items out nicely.

Set

TreeSetHashSet

Map

TreeMapHashMap

Hash Tables in Java: Recap

Hash tables:
● Data is converted into a hash code, the hash code is then reduced to a valid index.
● Data is then stored in a bucket corresponding to that index.

○ Each bucket is a “separate chain” of items.
● Resize when load factor N/M exceeds some constant.
● If items are spread out nicely, you get Θ(1) average runtime.

đậu hũ hashCode() -2108180664

Math.floorMod(x, 4) 0

data hash codehash function

reduce index *: Indicates “on average”.
†: Assuming items are evenly spread.

contains(x) add(x)

Bushy BSTs Θ(log N) Θ(log N)

Separate Chaining
Hash Table With
No Resizing

Θ(N) Θ(N)

… With Resizing Θ(1)† Θ(1)*†

Hash based set ops

HashTableVisualizer

Let’s play around with a hash table visualizer.

Goal, get a deeper understanding of:
● How hash codes affect the distribution of items.
● The interaction between equals and hashCode.
● Why hash tables are fast even though they use linked lists.

ColoredNumbers

The objects we’re inserting into the HashTable are of type ColoredNumber. Each
has 2 attributes:

Let’s see what happens when we insert ColoredNumbers 0 through 19 into a hash
table with 6 buckets.

private int num;
private Color color;

Distribution of Items

What do you notice about the distribution of items?

Why do you we get this distribution?

Distribution of Items (Your Answer)

What do you notice about the distribution of items?
● No bin has more than 5 items
● Odd indexes seem to have more items
● Hash doesn't seem to correspond well with the

item

Why do you think we get this distribution?
● Average bin length is N/M
● No clear pattern, nondeterministic (across runs)

Creating a Custom hashCode Function

Suppose we create a hashCode function that returns 0.

What distribution do we expect?
● In other words, how will the figure to the right change?

Let’s try it out.

@Override
public int hashCode() {
 return 0;
}

The Zero HashCode Function

The resulting distribution is to the
right.

Designing a Hash Function

What hash function will result in the distribution to the right?

private int num;
private Color color;

Designing a Hash Function

What hash function will result in the distribution to the right?

Your answer?
● num % 6

Let’s check it.

private int num;
private Color color;

Other More Exotic Hash Functions

We can define whatever hash function we want:
● Leading digit.
● Sum of the digits.
● Length of the number.
● Something else?

Let’s try one. Which one do you want to try?

Visualization for Some Basic Cases
hashCode and Equals

• Why Custom Hash Functions?
• contains
• Duplicate Values

The Danger of Mutable Keys
• Mutable vs. Immutable Types
• Mutable Hash Table Keys

A Peek into Java HashSets

Why Custom Hash
Functions?
Lecture 20, CS61B, Spring 2024

We mentioned that the goal of a hash function is to try to spread items out evenly.
● No spread: Returning 0.
● Bad spread: Returning sum of the digits.
● Good spread: Returning num.

HashCode Comparison

We mentioned that the goal of a hash function is to try to spread items out evenly.
● No spread: Returning 0.
● Bad spread: Returning sum of the digits.
● Good spread: Returning num.

What do you think about the spread of the default hashCode, which returns the
memory address?
A. No spread.
B. Bad spread.
C. Good spread.

The Default hashCode: yellkey.com/part

We mentioned that the goal of a hash function is to try to spread items out evenly.
● No spread: Returning 0.
● Bad spread: Returning sum of the digits.
● Good spread: Returning num.

What do you think about the spread of the default hashCode, which returns the
memory address?
A. No spread.
B. Bad spread.
C. Good spread: The memory address is effectively random, so items should be

evenly distributed.

The Default hashCode

Hard Question

If the default hashCode achieves good spread, why do we
even bother to create custom hash functions?

Visualization for Some Basic Cases
hashCode and Equals

• Why Custom Hash Functions?
• contains
• Duplicate Values

The Danger of Mutable Keys
• Mutable vs. Immutable Types
• Mutable Hash Table Keys

A Peek into Java HashSetscontains
Lecture 20, CS61B, Spring 2024

The equals Method for a ColoredNumber

Suppose the equals method for ColoredNumber is as below, i.e. two
ColoredNumbers are equal if they have the same num.
● General principle: if two things are equal, they should act as if they are the

same thing to outside observers

@Override
public boolean equals(Object o) {
 if (o instanceof ColoredNumber otherCn) {
 return this.num == otherCn.num;
 }
 return false;
}

HashSet Behavior

int N = 20;
HashSet<ColoredNumber> hs = new HashSet<>();
for (int i = 0; i < N; i += 1) {
 hs.add(new ColoredNumber(i));
}

ColoredNumber twelve = new ColoredNumber(12);
hs.contains(twelve); // returns ??

Suppose the equals method for ColoredNumber is on the previous slide, i.e.
two ColoredNumbers are equal if they have the same num.

Suppose we now check whether 12 is in the hash table.

What do we expect to be returned by contains?

HashSet Behavior

int N = 20;
HashSet<ColoredNumber> hs = new HashSet<>();
for (int i = 0; i < N; i += 1) {
 hs.add(new ColoredNumber(i));
}

ColoredNumber twelve = new ColoredNumber(12);
hs.contains(twelve); // returns true

Suppose the equals method for ColoredNumber is on the previous slide, i.e.
two ColoredNumbers are equal if they have the same num.

Suppose we now check whether 12 is in the hash table.

What do we expect to be returned by contains?
● We expect the contains call to be true, all 12s are created equal!

Finding an Item Using the Default HashCode

Suppose we are using the default hash function (uses
memory address), which yields the table to the right.

Suppose equals returns true if two ColoredNumbers have
the same num (as on the previous slide).

What does the contains operation return. Why?

int N = 20;
HashSet<ColoredNumber> hs = new HashSet<>();
for (int i = 0; i < N; i += 1) {
 hs.add(new ColoredNumber(i));
}
ColoredNumber twelve = new ColoredNumber(12);
hs.contains(twelve); // returns ??

Finding an Item Using the Default HashCode

Suppose we are using the default hash function (uses
memory address), which yields the table to the right.

Suppose equals returns true if two ColoredNumbers have
the same num (as on the previous slide).

What does the contains operation return. Why?
● Returns false with probability 5/6ths.

int N = 20;
HashSet<ColoredNumber> hs = new HashSet<>();
for (int i = 0; i < N; i += 1) {
 hs.add(new ColoredNumber(i));
}
ColoredNumber twelve = new ColoredNumber(12);
hs.contains(twelve); // returns ??

Finding an Item Using the Default HashCode

hashCode: Based on memory address.

equals: Based on num.

There are two ColoredNumber objects with num = 12.
● One of them is in the HashSet.
● One of them was created by the code above.

Each memory address is random.
● Only 1/6th chance they % to the same bucket.

ColoredNumber twelve = new ColoredNumber(12);
hs.contains(twelve); // returns ??

Finding an Item Using the Default HashCode

hashCode: Based on memory address.

equals: Based on num.

There are two ColoredNumber objects with num = 12.
● One of them is in the HashSet.
● One of them was created by the code above.

Example: If object created by code above is in memory
location 6000000, its hashCode % 6 is 0.
● HashSet looks in bucket zero, doesn’t find 12.

ColoredNumber twelve = new ColoredNumber(12);
hs.contains(twelve); // returns ??

Hard Question

If the default hashCode achieves good spread, why do we
even bother to create custom hash functions?
● Necessary to have consistency between equals and

hashCode for basic operations to function.

Basic rule: If two objects are equal, they’d better have the
same hashCode so the hash table can find it.

Visualization for Some Basic Cases
hashCode and Equals

• Why Custom Hash Functions?
• contains
• Duplicate Values

The Danger of Mutable Keys
• Mutable vs. Immutable Types
• Mutable Hash Table Keys

A Peek into Java HashSetsDuplicate Values
Lecture 20, CS61B, Spring 2024

Overriding Equals but Not HashCode: yellkey.com/wide

Suppose we have the same equals method (comparing
num), but we do not override hashCode.
● Result of adding 0 through 19 is shown to the right.

Which can happen when we call add(zero)?
A. We add another 0 to bin zero.
B. We add another 0 to bin one.
C. We add another 0 to some other bin.
D. We do not get a duplicate zero.

public boolean equals(Object o) {
 ... return this.num == otherCn.num; ...
}

ColoredNumber zero = new ColoredNumber(0);
hs.add(zero); // does another zero appear?

Overriding Equals but Not HashCode

Suppose we have the following equals method, but we
do not override hashCode.
● Result of adding 0 through 19 is shown to the right.

Which of the following can happen if we add 0 again?
A. We add another 0 to bin zero.
B. We add another 0 to bin one.
C. We add another 0 to some other bin.
D. We do not get a duplicate zero.

@Override
public boolean equals(Object o) {
 if (o instanceof ColoredNumber otherCn) {
 return this.num == otherCn.num;
 }
 return false;
}

Overriding Equals but Not HashCode

Suppose we have the following equals method, but we
do not override hashCode.
● Result of adding 0 through 19 is shown to the right.

Which of the following can happen if we add 0 again?

The new zero ends up in a random bin.
● 5/6ths chance: In bin 0, 2, 3, 4, or 5. Duplicate!
● 1/6 chance: In bin 1, no duplicate! (equals blocks it)

@Override
public boolean equals(Object o) {
 if (o instanceof ColoredNumber otherCn) {
 return this.num == otherCn.num;
 }
 return false;
}

Takeaway: Equals and hashCode

Bottom line: If your class override equals, you should also override hashCode in a
consistent manner.
● If two objects are equals, they must always have the same hashCode.

If you don’t everything breaks:
● Contains can’t find objects (unless it gets lucky).
● Add results in duplicates.

Visualization for Some Basic Cases
hashCode and Equals

• Why Custom Hash Functions?
• contains
• Duplicate Values

The Danger of Mutable Keys
• Mutable vs. Immutable Types
• Mutable Hash Table Keys

A Peek into Java HashSets

Mutable vs.
Immutable Types
Lecture 20, CS61B, Spring 2024

Immutable Data Types

An immutable data type is one for which an instance cannot change in any
observable way after instantiation.

Examples:
● Mutable: ArrayDeque, Percolation.
● Immutable: Integer, String, Date.

The final keyword will help the compiler ensure immutability.
● final variable means you may assign a value once (either in constructor of

class or in initializer), but after it can never change.
● Final is neither sufficient nor necessary for a class to be immutable.

public class Date {
 public final int month;
 public final int day;
 public final int year;
 private boolean contrived = true;
 public Date(int m, int d, int y) {
 month = m; day = d; year = y;
 }
}

Which of the Classes Below Are Immutable?

Immutable: an instance cannot change in any observable way after instantiation.

public class Pebble {
 public int weight;
 public Pebble() {
 weight = 1;
 }
}

public class Rock {
 public final int weight;
 public Rock (int w) {
 weight = w;
 }
}

public class RocksBox {
 public final Rock[] rocks;
 public RocksBox (Rock[] rox) {
 rocks = rox;
 }
}

public class SecretRocksBox {
 private Rock[] rocks;
 public SecretRocksBox(Rock[] rox) {
 rocks = rox;
 }
}

Which of the Classes Below Are Immutable?

Immutable: an instance cannot change in any observable way after instantiation.

public class Pebble {
 public int weight;
 public Pebble() {
 weight = 1;
 }
}

Pebble p = new Pebble();
p.weight = 2;

Example mutation:

Which of the Classes Below Are Immutable?

Immutable: an instance cannot change in any observable way after instantiation.

public class Rock {
 public final int weight;
 public Rock (int w) {
 weight = w;
 }
}

No mutation possible.

Unless you use the special “Reflections” library which lets you disobey access modifiers.

Which of the Classes Below Are Immutable?

Immutable: an instance cannot change in any observable way after instantiation.

Example mutation:

public class RocksBox {
 public final Rock[] rocks;
 public RocksBox (Rock[] rox) {
 rocks = rox;
 }
}

Rock r1 = new Rock(10);
Rock r2 = new Rock(20);
Rock[] rox = {r1, r2};
RocksBox rb = new RocksBox(rox);
rb.rocks[1] = null;

Which of the Classes Below Are Immutable?

Immutable: an instance cannot change in any observable way after instantiation.

public class SecretRocksBox {
 private Rock[] rocks;
 public SecretRocksBox(Rock[] rox) {
 rocks = rox;
 }
}

Example mutation:
Rock r1 = new Rock(10);
Rock r2 = new Rock(20);
Rock[] rox = {r1, r2};
SecretRocksBox rb = new SecretRocksBox(rox);
rox[0] = new Rock(-999);

Which of the Classes Below Are Immutable?

Immutable: an instance cannot change in any observable way after instantiation.

public class Pebble {
 public int weight;
 public Pebble() {
 weight = 1;
 }
}

public class Rock {
 public final int weight;
 public Rock (int w) {
 weight = w;
 }
}

public class RocksBox {
 public final Rock[] rocks;
 public RocksBox (Rock[] rox) {
 rocks = rox;
 }
}

public class SecretRocksBox {
 private Rock[] rocks;
 public SecretRocksBox(Rock[] rox) {
 rocks = rox;
 }
}

How Would We Make SecretRocksBox Immutable?

Immutable: an instance cannot change in any observable way after instantiation.

public class SecretRocksBox {
 private Rock[] rocks;
 public SecretRocksBox(Rock[] rox) {
 rocks = rox;
 }
}

Example mutation:
Rock r1 = new Rock(10);
Rock r2 = new Rock(20);
Rock[] rox = {r1, r2};
SecretRocksBox rb = new SecretRocksBox(rox);
rox[0] = new Rock(-999);

How Would We Make SecretRocksBox Immutable?

To make SecretRocksBox immutable, we can make our own copy of the array.
● Example mutation fails!

public class SecretRocks {
 private Rock[] rocks;
 public SecretRocks(Rock[] rox) {
 rocks = new Rock[rox.length];
 System.arraycopy(rox, 0,
 rocks, 0,
 rox.length);
 }
}

Rock r1 = new Rock(10);
Rock r2 = new Rock(20);
Rock[] rox = {r1, r2};
SecretRocksBox rb = new SecretRocksBox(rox);
rox[0] = new Rock(-999);

Immutability

Advantage: Less to think about: Avoids bugs and makes debugging easier.
● Analogy: Immutable classes have some buttons you can press / windows you

can look inside. Results are ALWAYS the same, no matter what.

Disadvantage: Must create a new object anytime anything changes.
● Example: String concatenation is slow!

charAt(int i)
compareTo(String s)
concat(String s)
split(String r)

String

Visualization for Some Basic Cases
hashCode and Equals

• Why Custom Hash Functions?
• contains
• Duplicate Values

The Danger of Mutable Keys
• Mutable vs. Immutable Types
• Mutable Hash Table Keys

A Peek into Java HashSets

Mutable Hash
Table Keys
Lecture 20, CS61B, Spring 2024

Mutable HashSet Keys

In principle, we can create a HashSet<List>.

Weird stuff happens if:
● We insert a List into a HashSet.
● Later mutate that List.

Example: hashCode

Consider an ArrayList equal to [0, 1].
● Such a list has hashCode 962 (can compute using code shown).

List<Integer> items = new ArrayList<>();
items.add(0);
items.add(1);
System.out.println(items.hashCode());

Example

Consider an ArrayList equal to [0, 1].
● Such a list has hashCode 962 (can compute using code shown).

If we add this list to a HashSet with 4 buckets, it lands in bucket 2 (962 % 4 = 2).

List<Integer> items = new ArrayList<>();
items.add(0);
items.add(1);
System.out.println(items.hashCode());

HashSet<List<Integer<> hs = new HashSet<>();
hs.add(items);

0
1
2
3

[0, 1]

Example

First, we added [0, 1], which had hashCode 962, and landed in bucket 2.
● Suppose we now add the list [2, 3]. This list has hashCode 1026, which also

lands in bucket 2.

List<Integer> items = new ArrayList<>();
items.add(0);
items.add(1);
HashSet<List<Integer>> hs = new HashSet<>();
hs.add(items);
hs.add(List.of(2, 3));

0
1
2
3

[0, 1]

[2, 3]

Example

Suppose we add [0, 1], then [2, 3].

Now suppose we add the number 7 to items.

List<Integer> items = new ArrayList<>();
items.add(0);
items.add(1);
HashSet<List<Integer>> hs = new HashSet<>();
hs.add(items);
hs.add(List.of(2, 3));
items.add(7);

0
1
2
3

[0, 1, 7]

[2, 3]

Example

Suppose we add [0, 1], then [2, 3].
● Now suppose we add the number 7 to items.

The hashCode of a list with [0, 1, 7] is 29829.
● What could go wrong?
● What method call will fail?

List<Integer> items = new ArrayList<>();
items.add(0);
items.add(1);
HashSet<List<Integer>> hs = new HashSet<>();
hs.add(items);
hs.add(List.of(2, 3));
items.add(7);

0
1
2
3

[0, 1, 7]

[2, 3]

Example

Suppose we add [0, 1], then [2, 3].
● Now suppose we add the number 7 to items.

The hashCode of a list with [0, 1, 7] is 29829.
● What could go wrong?
● What method call will fail?

○ contains(items)

List<Integer> items = new ArrayList<>();
items.add(0);
items.add(1);
HashSet<List<Integer>> hs = new HashSet<>();
hs.add(items);
hs.add(List.of(2, 3));
items.add(7);
System.out.println(hs.contains(items));

0
1
2
3

[0, 1, 7]

[2, 3]

Example

Suppose we add [0, 1], then [2, 3].
● Now suppose we add the number 7 to items.
● The hashCode of a list with [0, 1, 7] is 29829.

If we call contains(items), we have a problem.
● hashCode of items is 29829 % 4 = 1.
● Hash table looks in bucket 1, empty!

List<Integer> items = new ArrayList<>();
items.add(0);
items.add(1);
HashSet<List<Integer>> hs = new HashSet<>();
hs.add(items);
hs.add(List.of(2, 3));
items.add(7);
System.out.println(hs.contains(items));

0
1
2
3

[0, 1, 7]

[2, 3]

Don’t Mutate Keys

Bottom line: Never mutate an Object being used as a key.
● Incorrect results, item gets lost.

List<Integer> items = new ArrayList<>();
items.add(0);
items.add(1);
HashSet<List<Integer>> hs = new HashSet<>();
hs.add(items);
hs.add(List.of(2, 3));
items.add(7);
System.out.println(hs.contains(items));

0
1
2
3

[0, 1, 7]

[2, 3]

Visualization for Some Basic Cases
hashCode and Equals

• Why Custom Hash Functions?
• contains
• Duplicate Values

The Danger of Mutable Keys
• Mutable vs. Immutable Types
• Mutable Hash Table Keys

A Peek into Java HashSets

A Peek into Java
HashSets
Lecture 20, CS61B, Spring 2024

HashSets in Java

We can look at the code that implements the HashSet in Java:
● https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/u

til/HashSet.java

It simply delegates all of its work to a HashMap<K, Object> and ignores the value.

https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/HashSet.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/HashSet.java

HashSets in Java

We can then look at the code that implements the HashMap in Java:
● https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/u

til/HashMap.java
Reading the code, we can see that:
● Hash table starts at size 16, then doubles every time N exceeds load factor which

defaults to 0.75.
● The reduce function is a bit complicated. Come ask me at OH if you’re curious.

đậu hũ hashCode() -2108180664

(hc ^ (hc >>> 16)) & (N -1) 15

data hash codehash function

reduce index
For N = 16

https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/HashMap.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/util/HashMap.java

HashSets in Java

Josh wrote a class called HashSet probe that uses the reflections library to print out
the size of the array holding the buckets.

HashSets in Java

Josh wrote a class called HashSet probe that uses the reflections library to print out
the size of the array holding the buckets.

● N/M is never more than 0.75.

Resize occurred, N = 13, hash table array size = 32
Resize occurred, N = 25, hash table array size = 64
Resize occurred, N = 49, hash table array size = 128
Resize occurred, N = 97, hash table array size = 256
Resize occurred, N = 193, hash table array size = 512
Resize occurred, N = 385, hash table array size = 1024
Resize occurred, N = 769, hash table array size = 2048
Resize occurred, N = 1537, hash table array size = 4096

Let’s run a simulation to see what happens if the load factor is kept to 0.75 or less.

Visualizing a Hash Table With Load Factor 0.75.

Let’s run a simulation to see what happens if the load factor is kept to 0.75 or less.

Longest bucket in the simulation looks like it’s around ~5.
● In CS70, you’ll derive a precise mathematical characterization of the length of

the longest bucket.
○ This is the so called “balls into bins” problem.
○ https://en.wikipedia.org/wiki/Balls_into_bins_problem
○ Can use this math to show the worst case runtime is a bit worse than

constant.

Visualizing a Hash Table With Load Factor 0.75.

https://en.wikipedia.org/wiki/Balls_into_bins_problem

If we ctrl-F for “red-black” we find that that if a bin gets too full, it is converted into
a red-black tree!
● “This map usually acts as a binned (bucketed) hash table, but when bins get

too large, they are transformed into bins of TreeNodes, each structured
similarly to those in java.util.TreeMap. Most methods try to use normal bins,
but relay to TreeNode methods when applicable (simply by checking
instanceof a node). Bins of TreeNodes may be traversed and used like any
others, but additionally support faster lookup when overpopulated. However,
since the vast majority of bins in normal use are not overpopulated, checking
for existence of tree bins may be delayed in the course of table methods.”

● This is well beyond the scope of our course.

“The most useful algorithms are, unfortunately, not always the most beautiful.”
 -Josh Hug

Another Interesting Optimization

Citations

Hashbrowns in Cyberspace by Dall-E.
● Josh conjectures that H thing is the hashbrown key.

FAQ

What is the distinction between hash set, hash map, and hash table?

A hash set is an implementation of the Set ADT using the “hash table” as its
engine.

A hash map is an implementation of the Map ADT using the “hash table” as its
engine.

A “hash table” is a way of storing information, where you have M buckets that
store N items. Each item has a “hashCode” that tells you which of M buckets to
put that item in.

